The Hidden Convex Optimization Landscape of Two-Layer ReLU Networks
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e Training a ReLU network is a non-convex optimization problem with many i=1
local minima which can be hard to escape in practice

e The global minimum is the unique solution of a derived convex

optimization problem X X
e Convex problems have more predictable dynamics, and are easier to solve X X
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Is this actually convex?

Minimum found by gradient descent with 10 neurons

Loss landscape of a two neuron ReLU Network: o . o
The two local minima of a single neuron training

General Case and Result Applications
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Solving the convex problem can be Gradient descent vs optimal convex loss
_Theorem (simplified) (Wang et al., 2022b) faster
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e Two X data points x¢, x> € R with labels y;, y» € R u-n\?-ien/c- > DX(ui—vi)—y|| + 2> luill2+ lIvill (2)
e Two ReLU neurons v, w> € R, and second layer fixed to 1 , =1 2 = ,
Equivalence: The non convex (1) and the convex (2) problems have the same optimal
Outputs of two networks found by gradient descent: loss when there are enough neurons (m > n + 1) oA TR
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2 Characterization: We can find the optimal neurons for the non convex problem using
— ZmaX(ny w;) the solution of the convex problem using a simple mapping:
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o (5 9)is the activation pattern of the red neuron that only activate x;
Results for other settings

e The neuron has a different activation pattern in the two local minima References
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