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TL;DR
•Training a ReLU network is a non-convex optimization problem with many

local minima which can be hard to escape in practice
•The global minimum is the unique solution of a derived convex

optimization problem
•Convex problems have more predictable dynamics, and are easier to solve

Is this actually convex?

Loss landscape of a two neuron ReLU Network:

L(w1, w2) = (max(0, x1w1) + max(0, x1w2)− y1)2

+ (max(0, x2w1) + max(0, x2w2)− y2)2

•Two ✗ data points x1, x2 ∈ R with labels y1, y2 ∈ R
•Two ReLU neurons w1, w2 ∈ R, and second layer fixed to 1

Outputs of two networks found by gradient descent:

• ( 0 00 1 ) is the activation pattern of the red neuron that only activate x2
•The blue neuron has a different activation pattern in the two local minima

Equivalent convex problem:
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•This convex loss has the same optimal as the non convex loss for any m ≥ 2
•We can get the two optimal neurons from the convex solution

Minimum found by gradient descent with 10 neurons

General Case and Result

Setting

min
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• n samples: xxx j ∈ Rd (rows ofXXX with labels yj ∈ R, j = 1, . . . n
•m neurons: First layer www i ∈ Rd , second layer αi ∈ R, i = 1, . . . m
•λ ≥ 0 regularization, γ > 0, step size

Theorem (simplified) (Wang et al., 2022b)
•DDDi ∈ {0, 1}n×n, one activation pattern
•Ki = {vvv ∈ Rd,1XXXwww i≥0 =DDDi}, convex cones
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Equivalence: The non convex (1) and the convex (2) problems have the same optimal
loss when there are enough neurons (m ≥ n + 1)

Characterization: We can find the optimal neurons for the non convex problem using
the solution of the convex problem using a simple mapping:

(www i, αi) = (
uuu i√
∥uuu i∥2

,
√
∥uuu i∥2) if uuu i is non-zero

(www i, αi) = (
vvv i√
∥vvv i∥2

,−
√
∥vvv i∥2) if vvv i is non-zero

Results for other settings

•Additional layers, by using all possible combinations of activation matrices
(Ergen and Pilanci, 2021)
•Vector output, the regularization changes to require a nuclear norm
•Batch Normalization by replacingDDDiXXX with the first matrix in its Singular Value

Decomposition
•Wasserstein Generative Adversarial Network, as a convex-concave game
• Parallel networks (Wang et al., 2022a)

The two local minima of a single neuron training

Applications

Solving the convex problem can be
faster

Gradient descent vs optimal convex loss

Large scale initialization dynamic

Small scale initialization dynamic
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